Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells

نویسندگان

  • Ivana M. A. Diniz
  • Chider Chen
  • Xingtian Xu
  • Sahar Ansari
  • Homayoun H. Zadeh
  • Márcia M. Marques
  • Songtao Shi
  • Alireza Moshaverinia
چکیده

Dental-derived mesenchymal stem cells (MSCs) provide an advantageous therapeutic option for tissue engineering due to their high accessibility and bioavailability. However, delivering MSCs to defect sites while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated tissue regeneration. Here, we tested the osteogenic and adipogenic differentiation capacity of dental pulp stem cells (DPSCs) in a thermoreversible Pluronic F127 hydrogel scaffold encapsulation system in vitro. DPSCs were encapsulated in Pluronic (®) F-127 hydrogel and stem cell viability, proliferation and differentiation into adipogenic and osteogenic tissues were evaluated. The degradation profile and swelling kinetics of the hydrogel were also analyzed. Our results confirmed that Pluronic F-127 is a promising and non-toxic scaffold for encapsulation of DPSCs as well as control human bone marrow MSCs (hBMMSCs), yielding high stem cell viability and proliferation. Moreover, after 2 weeks of differentiation in vitro, DPSCs as well as hBMMSCs exhibited high levels of mRNA expression for osteogenic and adipogenic gene markers via PCR analysis. Our histochemical staining further confirmed the ability of Pluronic F-127 to direct the differentiation of these stem cells into osteogenic and adipogenic tissues. Furthermore, our results revealed that Pluronic F-127 has a dense tubular and reticular network morphology, which contributes to its high permeability and solubility, consistent with its high degradability in the tested conditions. Altogether, our findings demonstrate that Pluronic F-127 is a promising scaffold for encapsulation of DPSCs and can be considered for cell delivery purposes in tissue engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of cerebrospinal fluid-derived exosomes on neural differentiation of adipose mesenchymal stem cells in alginate hydrogel scaffold

Nowadays, researchers have made extensive efforts to find new treatments for nerve damage. Meanwhile, the role of exosomes in cell-cell communication is considered to be a new mechanism. Exosomes can act as suitable differentiating agents. The aim of this study was to investigate the differentiating effect of cerebrospinal fluid-derived exosomes on adipose mesenchymal stem cells in alginate hyd...

متن کامل

Evaluation of the effects of autologous adipose derived mesenchymal stem cells in combination with polyacrylamide hydrogel and nanohydroxyapatite scaffolds on healing in rabbit critical-sized radial bone defect model

Objective: In this study, the bone regeneration ability of polyacrylamide hydrogel and nanohydroxyapatite scaffolds (PAAH/NHA) and stem cells derived from adipose tissue (ADSCs) in the healing of critical sized bone defects in rabbit radius were assessed. Animals and procedures: 12 New Zealand white male rabbits were divided into 3 groups. The rabbits were anesthetized and 15 mm bone def...

متن کامل

3D Printing Surgical Implants at the clinic: A Experimental Study on Anterior Cruciate Ligament Reconstruction

Desktop three-dimensional (3D) printers (D3DPs) have become a popular tool for fabricating personalized consumer products, favored for low cost, easy operation, and other advantageous qualities. This study focused on the potential for using D3DPs to successfully, rapidly, and economically print customized implants at medical clinics. An experiment was conducted on a D3DP-printed anterior crucia...

متن کامل

Osteoblastic differentiation of rabbit mesenchymal stem cells loaded in A carrier system of Pluronic F127 and Interpore.

BACKGROUND Ideally, bone tissue engineering products should have the ability of osteoconduction and osteoinduction. According to the tissue engineering principle, mesenchymal stem cells (MSCs) combined with an appropriate scaffold can be used as a bone substitute for bone defects. Here we used Interpore as a scaffold loaded with MSCs mixed in hydrogel (Pluronic F127). In order to demonstrate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2015